Dias, Thiago Magela RodriguesSousa, Sérgio José de2025-04-142021-08-31https://repositorio.cefetmg.br//handle/123456789/1196Com o crescente volume de dados produzidos nos dias atuais, percebe-se cada vez mais usuários utilizando de diversos tipos de sistemas, como, por exemplo, sistemas de armazenamento de dados profissionais e acadêmicos. Dada a grande quantidade de dados armazenados, é notável a dificuldade de se encontrar candidatos com perfis apropriados a uma determinada atividade. Neste contexto, para tentar solucionar esse problema surge a recuperação ou busca de especialistas, um ramo da recuperação de informações, que consiste em, dada uma consulta, documentos são recuperados e são relacionados como unidades indiretas de informações das especialidades dos candidatos, com isso, alguma técnica é usada para agregar esses documentos gerando um escore. Possuindo um número menor de pesquisas relacionadas, a busca de especialistas na área acadêmica com modelos neurais se mostra um desafio ainda maior devido à complexidade desses modelos e à necessidade de grandes volumes de dados com julgamentos de relevância ou rótulos para seu treinamento. Diante disso, este trabalho propõe uma técnica de expansão e geração de dados fracamente supervisionados onde os julgamentos de relevância são criados com técnicas heurísticas, tornando possível utilizar modelos que exigem grandes volumes de dados. Além disso, é proposto uma técnica utilizando autoencoder profundo para selecionar documentos negativos ou julgamentos de irrelevância e por fim um modelo de ranqueamento baseado em redes recorrentes denominado Dual Embedding LSTM que foi capaz de superar todos os baselines comparados.ptModelo neural fracamente supervisionado de busca de especialistas em repositório de dados científicosDissertação2025-04-14ClassificaçãoCurriculum vitaeProcessamento de dadosPlataforma LattesArquivamento e recuperação de informação