AMAM framework multiagente para otimização usando metaheurísticas

Carregando...
Imagem de Miniatura

Data

2019-06-24

Título da Revista

ISSN da Revista

Título de Volume

Editor

Centro Federal de Educação Tecnológica de Minas Gerais

Resumo

Esta tese apresenta um framework multiagente para otimização usando metaheurísticas, denominado Arquitetura Multiagente para Metaheurísticas (AMAM). O framework AMAM é uma estrutura genérica e flexível, que tem, como principal característica, a facilidade de hibridização de metaheurísticas, a partir da utilização de conceitos relacionados a sistemas multiagentes. Nesta proposta, cada agente atua independentemente no espaço de busca de um problema de otimização combinatória. Os agentes compartilham informações e colaboram entre si através do ambiente. Esta tese tem, como principal contribuição, a consolidação do framework AMAM como uma ferramenta capaz de resolver diferentes problemas de otimização e que permita a fácil hibridização de metaheurísticas. Para tal, propõe a revisão da estrutura do framework AMAM, com a incorporação de novos recursos que permitam dinamizar e aperfeiçoar o processo de solução. A estrutura do framework foi dividida em dimensões, ao se considerar suas diferentes perspectivas. A remoção de estruturas de coordenação explícita e de elementos que intermediavam a comunicação permitiram aumentar a autonomia do agente. A cooperação entre os agentes foi aprimorada, buscando maior diversidade nas soluções disponíveis na estrutura cooperativa, através da definição de novos critérios de inserção de novas soluções. É proposta também a incorporação de capacidades auto-adaptativas nos agentes. O objetivo é permitir que o agente modifique suas ações com base nas experiências obtidas na interação com os outros agentes e com o ambiente, usando conceitos de Aprendizagem de Máquina. Neste sentido, são apresentadas duas propostas de agentes adaptativos baseados no algoritmo Q-Learning e em Autômatos de Aprendizagem. Para melhor introdução e validação do framework AMAM, esta tese utiliza instanciações do framework para dois problemas clássicos de otimização combinatória: Problema de Roteamento de Veículos com Janelas de Tempo (sigla em inglês, VRPTW) e o Problema de Sequenciamento de Máquina Paralela Não Relacionada com Tempos de Configuração Dependentes de Sequência (sigla em inglês, UPMSP-ST). Os experimentos demonstraram a efetiva redução nos custos das soluções com o uso de agentes cooperativos e a escalabilidade da proposta. Os experimentos também confirmaram que a capacidade de aprender atribuída ao agente influencia diretamente a qualidade das soluções, tanto do ponto de vista individual quanto do ponto de vista do trabalho em equipe. Sendo assim, a adaptabilidade dos agentes é confirmada, demonstrando que as técnicas de aprendizado utilizadas conseguem superar a necessidade de conhecimento das características específicas do problema a ser tratado. Os resultados obtidos possibilitaram concluir que o framework aqui apresentado é um passo à frente em relação aos demais frameworks da literatura quanto à adaptação aos aspectos particulares dos problemas tratados.

Descrição

Palavras-chave

Programação heurística, TECHNOLOGY::Information technology::Computer science::Software engineering, Sistemas multiagentes, Otimização combinatória, Computadores híbridos e analógicos

Citação