O Repositório será lançado oficialmente no dia 9 de abril de 2025 às 14h30min no miniauditório do Campus Nova Suiça.
 

Magneto-inductive waves in metamaterial-based wireless power transfer systems

dc.contributor.advisorGonçalves, Sandro Trindade Mordente
dc.contributor.advisorLatteshttp://lattes.cnpq.br/9879076086228404
dc.contributor.authorFreitas, Felipe Machado de
dc.contributor.refereeGonçalves, Sandro Trindade Mordente
dc.contributor.refereeVollaire, Christian
dc.contributor.refereeAfonso, Márcio Matias
dc.date.accessioned2025-03-28T14:07:01Z
dc.date.available2025-03-28T14:07:01Z
dc.date.issued2023-05-26
dc.description.abstractThis work proposes a method of analysis of printed Magnetic Coupled Wireless Power Transfer (MCWPT) systems operating in a few MHz based on Circuit Model (CM). Initially, the effect of resonant surfaces on wireless energy transmission and the advantages of their use are discussed. Therefore, the resulting increase in efficiency is discussed based on the Magneto-Inductive Waves (MIW) theory. Furthermore, the feasibility of using metasurfaces in Wireless Power Transfer (WPT) systems where the transmitter and receiver are misaligned or are coplanar is analyzed. Finally, possibilities for optimizing the impedance of WPT systems to increase transmission efficiency are also presented. An analytical model is proposed to calculate the self-inductance of printed inductors, their characteristic resistance, and the mutual inductance between coils. The presented formulation for calculating the mutual inductance between inductors is based on Neumann’s formula. Due to the generality of this approach, it can also be applied to more complex structures, such as metasurfaces. In the analysis of the MCWPT CM, it is considered that the unknown current along the microstrip is considered as a single value distributed in each modeled coil. First, computational aspects related to model implementation are discussed. Then, the calculated results are compared step by step with commercial software based on electromagnetic methods in the frequency domain. Then, the microstrip model is experimentally validated with measurements of transmission coefficients from an MCWPT printed in FR4, operating at 24𝑀𝐻𝑧. A new design based on printed square coils is also proposed, but now with reduced size and working at 13.56 𝑀𝐻𝑧. A frequency domain analysis on how the frequency and receiver position on the metasurface affect efficiency is done. Then, the variation of the input impedance and the current distribution on the surface of the metamaterial are analyzed in relation to the variations in the position of the receiver and in the charge rate on the resonant surface. For this, the MIW theory is used in a specific application: Passive Position Tracking in Dynamic MCWPT Systems. Finally, it discusses the importance of knowing the current distribution and impedance optimization parameters for an MCWPT system. The results show that the proposed method is valid for modeling printed inductors. In addition, the model proved to be computationally more efficient for the analysis of large systems when compared to commercial full-wave simulation software, and the practical results point to conformity.
dc.description.abstractotherEste trabalho propõe um método de análise de sistemas Magnetic Coupled Wireless Power Transfer (MCWPT) impressos operando em poucos MHz baseado em Modelo de Circuito (CM). Inicialmente discute-se o efeito das superfícies ressonantes na transmissão de energia sem fio e as vantagens de seu uso. Logo, o consequente aumento de eficiência é discutido com base na teoria de Magneto-Inductive Waves (MIW). Além disso, é analisada a viabilidade do uso de metasuperfícies em sistemas Wireless Power Transfer (WPT) onde o transmissor e o receptor estão desalinhados ou são coplanares. São apresentadas, também, possibilidades de otimização da impedância dos sistemas WPT para aumentar a eficiência da transmissão. Um modelo analítico é proposto para calcular a auto-indutância de indutores impressos, sua resistência característica e a indutância mútua entre bobinas. A formulação apresentada para o cálculo da indutância mútua entre indutores é baseada na fórmula de Neumann. Devido à generalidade desta abordagem, ela também pode ser aplicada a estruturas mais complexas, como metasuperfícies. Na análise do CM do MCWPT, considera-se que a corrente desconhecida ao longo da microfita é considerada como um único valor distribuído em cada bobina modelada. Primeiramente, são discutidos aspectos computacionais relacionados à implementação do modelo. Em seguida, os resultados calculados são comparados passo a passo com software comercial baseado em métodos eletromagnéticos no domínio da frequência. Em seguida, o modelo de microstrip é validado experimentalmente com medições de coeficientes de transmissão de um MCWPT impresso em FR4, operando em 24𝑀𝐻𝑧. Além disso, é proposto um novo design baseado em bobinas quadradas impressas, mas agora com tamanho reduzido e operando a 13,56 𝑀𝐻𝑧. Com este sistema realiza-se uma análise no domínio da frequência sobre como a frequência e a posição do receptor sobre a metasuperfície afetam a eficiência. Em seguida, analisa-se a variação da impedância de entrada e a distribuição de corrente na superfície do metamaterial em relação às variações na posição do receptor e na taxa de carga na superfície ressonante. Para isso, a teoria de MIW é utilizada em aplicação específica: Rastreamento de Posição Passiva em Sistemas MCWPT Dinâmicos. Finalmente, discute a importância de conhecer a distribuição de corrente e os parâmetros de otimização de impedância para um sistema MCWPT. Os resultados mostram que o método proposto é válido para modelar indutores impressos. Além disso, o modelo se mostrou computacionalmente mais eficiente para análise de grandes sistemas quando comparado a softwares comerciais de simulação de onda completa, e os resultados práticos apontam para a conformidade.
dc.identifier.urihttps://repositorio.cefetmg.br//handle/123456789/1015
dc.language.isoen
dc.publisherCentro Federal de Educação Tecnológica de Minas Gerais / Universidade Federal de São João del-Rei
dc.publisher.countryBrasil
dc.publisher.initialsCEFET-MG / UFSJ
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica
dc.subjectCircuitos eletrônicos – Modelos
dc.subjectMateriais eletrônicos
dc.subjectMateriais magnéticos
dc.subjectTransmissão de energia sem fio
dc.titleMagneto-inductive waves in metamaterial-based wireless power transfer systems
dc.typeDissertação

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Magneto-inductive waves in metamaterial-based wireless power transfer systems.pdf
Tamanho:
63.53 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.39 KB
Formato:
Item-specific license agreed to upon submission
Descrição: