Doutorado em Modelagem Matemática e Computacional
URI Permanente para esta coleção
Navegar
Navegando Doutorado em Modelagem Matemática e Computacional por Assunto "Computação evolutiva"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
Item Análise e síntese de regras de adaptação em estratégias evolutivas usando funções de Lyapunov estocásticas(Centro Federal de Educação Tecnológica de Minas Gerais, 2019-02-28) Corrêa, Cláudia Raquel Martins; Wanner, Elizabeth Fialho; Fonseca, Carlos Manuel Mira da; http://lattes.cnpq.br/0398907021926383; http://lattes.cnpq.br/2243256075052322; http://lattes.cnpq.br/0859784566522265; Wanner, Elizabeth Fialho; Fonseca, Carlos Manoel Mira da; Peres, Pedro Luis Dias; Takahashi, Ricardo Hirsohi Caldeira; Souza, Sérgio Ricardo de; Cardoso, Rodrigo Tomás NogueiraAs Estratégias Evolutivas (EEs) constituem uma classe particular de Algoritmos Evolutivos (AEs). As pesquisas que tratam da análise de estratégias evolutivas têm sido focadas nas aplicações destes algoritmos, usados para resolver problemas das mais diversas áreas, principalmente em espaços de busca contínuos, mas também em espaços discretos. As investigações das EEs também demonstram que estes algoritmos, ainda suscetíveis a diversas pesquisas, são eficientes e populares. Uma análise contendo provas rigorosas de convergência de EEs é uma tarefa difícil devido à estocasticidade destes algoritmos, apesar desta aleatoriedade permitir sua análise sob uma perspectiva matemática. Neste trabalho são propostas Estratégias Evolutivas com um único progenitor e λ descendentes (1 +, λ)-EE. Na primeira delas, o tamanho do passo do algoritmo é modificado de acordo com uma regra de adaptação simples baseada em sucesso, denominada Regra 1. Uma extensão desta regra de adaptação do tamanho do passo, denominada Regra 2, também é proposta. Nesta estratégia o tamanho do passo é adaptado de acordo com o número de descendentes bem sucedidos. Além destas, a generalização a qualquer número de descendentes e qualquer limiar, de uma EE com controle de mutação baseado no tamanho do passo, também é explorada e nomeada Regra 3. Finalmente é formulada uma EE com regra de adaptação do tamanho do passo baseada na combinação da Regra 1 com a Regra 3. A análise teórica destes algoritmos evolutivos concentra-se na investigação sobre sua convergência, quando aplicados em problemas de otimização em espaços de busca contínuos em uma classe de funções estritamente unimodais de uma variável. O estudo sobre a convergência das EEs segue uma abordagem usando funções de Lyapunov estocásticas, no contexto da teoria de martingais. Expressões gerais para as esperanças condicionais dos próximos valores do tamanho do passo e para a distância para o ótimo são analiticamente derivadas para todas as Estratégias, e uma função de Lyapunov apropriada é construída. Os limites superiores da taxa de convergência, bem como os valores dos parâmetros de adaptação, são obtidos através da otimização numérica para valores crescentes de λ, permitindo também uma seleção informada desse parâmetro. Os resultados experimentais contribuem para uma análise dos limites de convergência teóricos obtidos e fornecem uma visão adicional sobre os pontos fortes e fracos da metodologia adotada.Item Classificação e reconhecimento de padrões: novos algoritmos e aplicações / Emmanuel Tavares Ferreira Affonso(Centro Federal de Educação Tecnológica de Minas Gerais, 2022-02-28) Affonso, Emmanuel Tavares Ferreira; Silva, Alisson Marques da; Moita, Gray Farias; http://lattes.cnpq.br/2550201329788172; http://lattes.cnpq.br/3856358583630209; http://lattes.cnpq.br/3453401178017064Este trabalho visa o desenvolvimento de novos algoritmos para tarefas de classificação e reconhecimento de padrões. Inicialmente é proposto um método para seleção de atributos (FS, do inglês feature selection) para classificadores com treinamento offline. A abordagem de FS proposta, chamada de Mean Ratio for Feature Selection (MRFS), é baseada na razão das médias dos atributos em cada classe. MRFS possui baixo custo computacional pois utiliza apenas operações matemáticas básicas como adição, divisão e comparação e realiza apenas uma passagem nos dados para ranquear os atributos. O MRFS foi implementado e avaliado como método filter (MRFS-F) e como wrapper (MRFS-W). O desempenho dos métodos foram avaliados e comparados com o estado da arte. As comparações realizadas sugerem que os métodos propostos possuem um desempenho comparável ou superior aos métodos alternativos. Além dos métodos de FS foram propostos três classificadores evolutivos com treinamento online. O primeiro chamado de evolving Fuzzy Mean Classifier (eFMC) é baseado em um algoritmo de agrupamento fuzzy que realiza a classificação com base no grau de pertinência dos grupos. Novos grupos são criados sempre que uma nova classe é descoberta e a atualização do centro dos grupos é através das médias amostrais calculadas de forma incremental. O segundo classificador introduzido é o evolving Fuzzy Classifier (eFC) que de maneira análoga utiliza as médias amostrais para atualização dos centros dos grupos. Seu diferencial está na capacidade de gerar mais de um grupo associado a uma mesma classe para mapear diferentes regiões do espaço dos dados, criação de novos grupos aplicando o conceito de procrastinação, união de grupos redundantes e exclusão de grupos obsoletos. Por fim, foi proposto um classificador evolutivo com seleção de atributos denominado evolving Fuzzy Classifier with Feature Selection (eFCFS). Este classificador foi construído utilizando o mesmo algoritmo do eFC e incorporando o método MRFS de seleção de atributos. Os classificadores evolutivos propostos foram avaliados e comparados com três classificadores evolutivos alternativos. Os resultados experimentais e as comparações sugerem que os métodos baseados no MRFS para auxiliar modelos com treinamento offline e os 3 modelos evolutivos com treinamento online são promissores como alternativas para tarefas de classificação e reconhecimento de padrões, com boa acurácia e baixo custo computacional.Item Multi- and many-objective optimization some advances towards theoretical aspects in performance quality indicators and evolutionary frameworks(Centro Federal de Educação Tecnológica de Minas Gerais, 2022-11-30) Lopes, Cláudio Lúcio do Val; Martins, Flávio Vinicius Cruzeiro; Wanner, Elizabeth Fialho; Deb, Kalyanmoy; http://lattes.cnpq.br/2243256075052322; http://lattes.cnpq.br/3199420233273400; http://lattes.cnpq.br/9356922762318218; Martins, Flávio Vinicius Cruzeiro; Wanner, Elizabeth Fialho; Deb, Kalyanmoy; Takahashi, Ricardo Hiroshi Caldeira; Fonseca, Carlos Manuel Mira de; Sá, Elisângela Martins de; Lisboa, Adriano ChavesA otimização com muitos objetivos (MaO) refere-se a problemas com quatro ou mais objetivos, os quais introduzem desafios complexos, incluindo a ineficácia da dominância de Pareto, dificuldades no cálculo de indicadores de qualidade, visualização de conjuntos de soluções e equilíbrio entre convergência e diversidade. Um dos principais problemas nesse contexto é a comparação e avaliação de conjuntos de soluções gerados por algoritmos de otimização, já que tais conjuntos frequentemente contêm soluções incomparáveis. A seleção adequada de indicadores de qualidade é crucial para caracterizar a frente de Pareto de maneira precisa. Nesta tese, abordamos inicialmente o indicador Dominance Move (DoM), propondo novos métodos para seu cálculo, incluindo modelos de programação inteira mista (MIP) e uma abordagem aproximada baseada em aprendizado de máquina. O DoM demonstrou ser uma ferramenta eficaz para medir e comparar soluções em problemas MaO. Em seguida, apresentamos uma estrutura multiestágio que emprega algoritmos evolutivos baseados em vetores de referência para gerar conjuntos de soluções bem distribuídas e convergentes. Essa abordagem visa corrigir progressivamente deficiências em estágios anteriores, assegurando a obtenção de soluções Pareto-ótimas representativas. Os resultados desta pesquisa incluem a análise sistemática de métodos existentes e extensões inovadoras, tanto em indicadores de qualidade quanto em técnicas para equilibrar convergência e diversidade em algoritmos evolutivos.